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The turbulence structure in zero-pressure-gradient boundary layers above smooth, 
rough and wavy surfaces was investigated. The mean flow, turbulence intensity and 
spectral data for both smooth and rough surfaces show support for the attached eddy 
hypothesis of Townsend (1976), the model for wall turbulence proposed by Perry & 
Chong (1982) and the extended version developed by Perry, Henbest & Chong (1986). 
Anomalies in hot-wire behaviour when measuring in the turbulent wall region of the 
flow were discovered and some of these have been resolved. 

1. Introduction 
In  recent work by Perry, Henbest & Chong (1986), the turbulence structure in fully 

developed pipe flow was investigated in the light of Townsend’s (1976) attached-eddy 
hypothesis, the theory of Perry & Chong (1982), the classical Kolmogorov (1941) 
theory and an extension of the dimensional analysis approach of Perry & Abell 
(1977). Encouraging support was found for the derived similarity laws. Here, 
zero-pressure-gradient turbulent-boundary-layer data on both smooth and rough 
walls are investigated in the light of the above mentioned similarity proposals, which 
are summarized below. 

In  this paper the coordinate system will be defined with x in the streamwise 
direction, y in the lateral direction and z normal to the wall with velocity components 
U,, U,  and U, respectively. Overscores denote temporal mean values and lower case 
letters denote instantaneous fluctuating values. The power spectral density in energy 
per unit streamwise wavenumber k, of ui-fluctuations is @&,), where i = 1, 2 or 3 
(repeated indices do not denote a summation) and is normalized such that 

Throughout this paper the argument of the power spectral density defines the unit 
quantity over which the energy density is measured. 

According to Perry & Chong (1982) a turbulent boundary layer can be modelled 
with hierarchies of coherent attached eddies which contribute to the mean vorticity 
and Reynolds stresses. In an extension of their work, Perry et al. (1986) proposed that 
the attached eddies are surrounded by fine-scale locally isotropic ‘detached ’ eddies 
which contribute significantly to the turbulent energy dissipation but not to the 
mean vorticity or Reynolds shear stress. From the Biot-Savart law and spectral 
calculations, they showed that at a distance z from the wall, most of the contributions 
to u1 and u2 are from attached eddies of scale of order z and larger, whereas most 
of the contributions to u3 are from attached eddies of scale of order z. 
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FIGURE 1. Predicted a,-spectra (a) inner-flow scaling; (b )  outer-flow scaling. 
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Furthermore, they showed using dimensional analysis (Perry & Abell 1977) and 
physical reasoning, based upon the earlier model (Perry & Chong 1982), and 
Townsend’s attached-eddy hypothesis, that in the turbulent wall region the spectrum 
of u,-velocity fluctuations should have the form shown in figure 1 (a) when scaled with 
‘inner flow ’ scaling variables ( z  and U,), and the form shown in figure 1 (b) when scaled 
with ‘outer flow’ scaling variables (AE and U,). The turbulent wall region is defined 
as v / U ,  4 z 4 A, for a smooth wall, where U, is the mean wall shear velocity, v is 
the kinematic fluid viscosity and d is an integral boundary-layer thickness derived 
using either the Hama (1954) or the Coles (1968) velocity-defect-law formulation (see 
$2.3). A ,  has a value close to the 99 % boundary-layer thickness, ass. In  figure 1 (a, b), 
P, N and M are universal constants and F is a large-scale characteristic constant. 
Such a constant is one that depends on the large-scale flow geometry, i.e. it depends 
on whether we are considering flow in a boundary layer, pipe or duct. In  region of 
overlap I, shown in figure 1 (a, b), the spectrum follows an inverse power law, i.e. 

where A, is a universal constant. In  region of overlap 11, shown in figure 1 (a), the 
spectrum follows the Kolmogorov (1941) -8 power law, i.e. 

1 where q = (v3 /s ) f ,  u = (ye), KO is the universal Kolmogorov (1941) constant and K is 
the von KBrmBn constant. Region of overlap I1 is often referred to as the inertial 
subrange. The dissipation range begins at the end of the -% power-law region at a 
universal value of k, q = M or a value of k, x = (k, z ) ~  = M ( K ) - ~  (z+)t, where 

The existence of an inverse-power-law region for the streamwise velocity com- 
ponent in wall-bounded shear flows has been noted in the literature before (see 
Tchen 1953; Laufer 1954; Bremhorst & Bullock 1970; Bremhorst & Walker 1973; 
Hinze 1975; Perry & Abelll977 ; Bullock, Cooper & Abernathy 1978; Hunt & Joubert 
1979; Erm, Smits & Joubert 1986). Tchen showed that under certain conditions in 
homogeneous shear flow without boundaries, an inverse-power-law spectral region 
can occur for the streamwise velocity component only. He correlated this with the 
boundary-layer data of Klebanoff & Diehl(l951). The authors believe that Tchen’s 
analysis in its present form is not applicable to wall-bounded shear flows. 

Be integrating over the various u,-spectral regions the u,-broadband turbulence 
intensity distribution in the turbulent wall region is obtained, i.e. 

z+ = zu,/v. 

where C is a universal constant and B, is a large-scale characteristic constant. 
The expected analytical forms for the u,-motions in the turbulent wall region were 

shown to be similar to those for the u,-motions because attached eddies which 
contribute significantly to u, also contribute significantly to u2. Tchen did not obtain 
this result. 

For the u,-spectra no outer-flow scaling law is expected because the contributions 
to u, from the attached eddies are only from attached eddies of scale of order z. Hence, 
only an inner-flow scaling law and a Kolmogorov scaling law are expected for the 
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u,-spectra in the turbulent wall region and should have the form shown in figure 2 
when scaled with inner-flow scaling coordinates. One region of overlap exists, the 
inertial subrange, in which the spectrum follows a -% power law. Integrating over 
the various u,-spectral regions gives the u,-broadband turbulence intensity 
distribution in the turbulent wall region, i.e. 

where A, is a universal constant. 
The authors believe that hierarchies of attached coherent eddies similar to those 

over a smooth surface also exist over a fully rough surface except that the smallest 
hierarchy now scales with k, the roughness scale, instead of with the Wine etal. 
(1967) scaling (see Perry & Chong 1982). For a rough wall the turbulent wall region 
is defined as k -4 z < A,. It is anticipated that the analysis of Perry et al. (1986) will 
also be valid for fully developed rough-wall flow and it will be seen that the data 
gives encouraging support to their analysis. There may be slight differences in the 
numerical constants obtained from the smooth-wall and the rough-wall boundary- 
layer data presented here owing to experimental difficulties. However, under 
asymptotic conditions of v / U ,  < z 4 A ,  and k < z < A ,  we expect that the scaling 
laws for smooth and rough surfaces would be indistinguishable. 
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FIGURE 3. Schematic view of the wavy wall. k = 17 mm; A = 76 mm. 
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FIGURE 4. The ‘mesh’ roughness. 

2. Apparatus 
Boundary-layer flow over a two-dimensional ‘wavy’ surface (figure 3)’ a three- 

dimensional ‘mesh’ roughness (figure 4) and a smooth flat plate were investigated. 
The closed circuit wind tunnel used has working-section inlet dimensions of 940 mm 
(width) by 410 mm (height), is 6.7 m long and has an adjustable roof which waa used 
to set a zero pressure gradient. Mounted above the working section is the ‘flying 
hot-wire’ facility described in Watmuff, Perry & Chong (1983). The measuring probe 
(Pitot-static or hot-wire) is mounted onto the ‘flying hot-wire’ sled sting during 
measurement. The sled can be moved along the working-section centreline enabling 
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measurements to be made atl different streamwise locations and a stepping motor on 
the sled enables the probe to be traversed through the boundary layer. A separate 
facility enabled the probe to be traversed laterally across the working section to check 
for secondary flows. 

Mean velocity profiles were measured using a Pitot-static probe. Presure differences 
were measured with a Datametrics Barocel pressure transducer model 1014A. 

2.1. Hot-wire anemometry 
All hot wires were operated in constant-temperature mode with a nominal resistance 
ratio of 2.0 using hot-wire anemometers similar to those detailed in Perry (1982 
pp.60-70 and Appendix C). The etched length of the 5pm-diameter hot-wire 
filaments was nominally 1.2 mm and the X-wires were nominally +as0, and where 
stated & 60°, to the mean flow direction. The non-linear dynamic calibration method 
used is described in Perry (1982 pp. 126). Signals were sampled on-line by a 
PDP 11/10 digital computer using a 12-bit A-D converter. 

The u,-spectra were measured with uncalibrated normal wires and the uz- and 
u,-spectra with dynamically matched, uncalibrated X-wires. The power spectral 
density of the hot-wire signal was calculated using a FFT-algorithm and the resulting 
frequency bandwidth was 0.1 Hz to 10 kHz. The spectral argument was converted 
from frequency f to one-dimensional streamwise wavenumber k, using Taylor’s 
(1938) hypothesis of frozen turbulence, i.e. k, = 2 x f / U ,  where U, is the local 
convection velocity, which was assumed to be equal to the local mean velocity at  that 
point in the flow. In reality, there is a spread in convection velocities at  a given 
wavenumber and the effect of this on the inferred boundary-layer spectra obtained 
using Taylor’s hypothesis has been examined by Perry et al. (1986). The spectra 
presented here were smoothed and then normalized using (1). 

2.2. Wall shear velocity 
In all experiments we attempted to use the X-wire Reynolds shear stresses to infer 
U,, the wall shear velocity. To test the accuracy of this method U, was obtained using 
independent methods. On a smooth wall, the Clauser-chart and Preston- tube 
methods are available and are known to be fairly reliable, but on a rough wall no 
really reliable method exists. 

On rough walls, difficulties arise because we do not know the effective origin of 
the boundary layer, (i.e. the apparent position of x = 0 relative to the tops of the 
roughness elements, see insert in figure 5), preventing the use of the gradient of the 
log-law to determine U,. Some of the methods used to obtain an estimate of U, over 
rough walls are the von KSrman-momentum-integral equation, presure-tapped 
roughness elements (see Perry, Schofield & Joubert 1969) and a drag balance. The 
momentum-integral method is known to be highly sensitive to any three- 
dimensionality of the flow and the determination of the derivatives of the various 
mean-flow quantities from a few experimental data points is a highly inaccurate 
process. The pressure tapping of roughness elements is only practical with large 
elements. The drag-balance method gives reasonable results but the technique 
requires considerable development and care t o  minimize or account for gap leakage. 
A method was developed here to determine the wall shear velocity U, and the error 
in origin e ,  that relies on the universality of the velocity-defect law. This method is 
similar to the ‘wake alignment’ method used by Perry & Joubert (1963) and is 
described below. 
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FIQURE 5.  A Mean-velocity profile over the mesh roughness with different values of e.  

2.3. The velocity-defect-law method of determining Ci and e 

The velocity-defect law is given by 

where is the free-stream velocity, E = z/AE, 

A - s* (Ly, C ,  = Srn f (6)  d6, -c, c; 0 

Ci is the local skin friction coefficient and 6* is the displacement thickness. Hama 
(1954) defined f(E) for a zero-pressure-gradient boundary layer to be 

1 
f(E)=--ln(6)+2.309 (0<6<0.15),  (7a) 

= 9.6(1-6)2 (0.15 < E < 1). (7 b )  
K 

Using 7 (a )  and (b) the constant C,  has a value of 3.3715. 
Figure 5 -- shows a typical mean-velocity profile measured over a rough surface 

plotted as U,/  VIE vs. log (zT + e) for different values of e,  where zT is the wall distance 
measured from the tops of the roughness elements and e is the error in origin, i.e. 
z = zT + e. For each value of e ,  a straight line is fitted to the log-law region and this 
has a slope of ( 1 / ~ )  (si)i and the maximum deviation of the wake from this line has 
a value of L($?i)i. Cross-plots of e vs. L (figure 6 a )  and e ws. (&‘i)i (figure 6b)  are made. 
According to the Hama velocity-defect law, e and t(C$ have the correct value when 
L = 2.489.t 

t In  previous publications of this work an incorrect value of L = 2.56 was given. The error in 
the estimates of Ci and e caused by this were negligible. 

15 FLM 177 
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FIGURE 6. Method of obtaining e and (&'# using the velocity-defect-law method 
(Hama 1954 and Coles 1968). 

Alternatively, Coles' (1968) law of the wake could have been used to  formulatef([) 
with a Coles wake parameter of 0.55 and this gives values of L = 2.683 and 
C, = 3.780. This changes the estimates of Cf and e slightly. Throughout this paper 
the Hama formulation has been used to determine the lengthscale A, .  

On rough surfaces, i t  has been known for some time that the Reynolds shear stress 
measured with X-wires falls off as the wall is approached. This fall-off cannot be 
explained in terms of viscous stresses. As pointed out by Perry et al. (1969) this implies 
that a stationary mean flow 'wave', which transports momentum, might exist above 
the roughness elements. 

3. An investigation of Reynolds shear stress over rough and over smooth 
surfaces 

3.1. The wavy wall 

Mean-velocity profiles measured over the wavy wall were of an unusual shape, no 
logarithmic region existed and close to the wall the gradient of mean velocity ( d q / d z )  
was slightly negative. Thus the velocity-defect-law method could not be used to 
obtain estimates of U, and e .  This odd profile is thought to  be because k/&,, is large, 
i.e. due to a lack of development length. 

Figure 7 defines the various relevant quantities for flow over the wavy wall. The 
instantaneous velocities for a given z are 

where 
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X 

FIQURE 7. Definition of flow quantities over the wavy wall. 
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FIGURE 8. Typical Reynolds-shear-stress profile over the wavy wall. 

and by definition 

note that the symbols ( ) denote spatial averaging over one wavelength A of the wavy 
surface (see (9) and figure 3). Similarly, 

and (q) is taken to be zero close to the wall. Suppose we consider the case where 
the streamwise development of the boundary layer is very slow and pressure-gradient 

1.5-2 
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- - 
FIQURE 9. Plots of (a) U,(x )  and (b) U&) above the ~ wavy wall obtained with the flying hot-wire 

for varying values of z. Origins of V,(x)  have been shifted in (b). 

effects are small, then for zT sufficiently small the effective wall shear stress 70 is 
-- 

70 = -p(u l (x ,  t )  u&, t ) )  -p(u,(z)  u&)), (12) 

where p is the fluid density. This will correspond to the mean force acting on the wall 
per unit area due to viscous and form drag on the roughness elements. For the rough 
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FIGURE 10. Typical Reynolds-stress profile over the mesh roughness, x = 2500 mm. 

surfaces tested here ul(z, t )  u3(x, t )  was found to be invariant with x over a wavelength 
h and so 

The first term is the Reynolds shear stress that would be seen by a stationary probe 
and the second represents the contribution to the momentum transport by a 
stationary wave above the elements. Figure 8 shows a Reynolds-shear-stress profile 
measured over the wavy wall with a stationary X-wire. As can be seen the Reynolds 
shear stress falls off towards the wall and the shear stress is not even close to the value 
- obtained using the momentum integral equation. Figure 9 shows plots of q ( x )  and 
U,(x) measured over the wavy wall by the flying hot wire at different distances from 
the wall. It can be seen that the variations in Ul(x) and U 3 ( z )  are significant but 
attenuate away from the wall and that they are approximately -- 90" out of phase. 
Because of this phase difference, the spatially averaged quantity <u,(z) u 3 ( x ) ) ,  which 
represents the contribution by a stationary wave, was negligible. Spanwise traverses 
of U, showed that secondary flow in the tunnel was very small. 

3.2. The mesh roughness 
Mean-velocity profiles measured over the mesh roughness showed that the velocity- 
defect-law method could be applied to determine the value of U, as the values agreed 
reasonably with the values determined using the momentum integral equation. 
However, neither of these values agreed with the value determined from the X-wire 
Reynolds-shear-stress profile shown in figure 10 (which falls off as the wall is 
approached instead of asymptoting to a constant value as would be expected for 
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constant pressure layers). It was felt that  inadequate spatial resolution of the X-wires 
may have been the cause but repeating the test with a set of X-wires with etched 
lengths reduced from 1.2 to 0.5 mm and with spacing between the wires reduced from 
1.0 to 0.5 mm gave the same result. 

The dynamic calibration facility enabled the calibrated X-wires to be given a known 
Reynolds shear stress by oscillating the wires in a uniform flow with known sinusoidal 
velocity perturbations u1 and u3 and with a known phase difference. This could be 
compared with the measured X-wire Reynolds shear stress and agreement was found 
to be within 1 % .  

It was therefore decided to measure the Reynolds shear stress over a smooth plate 
as the Clauser-chart method could be used as another independent method of 
determining U,. The X-wire Reynolds shear stress over a smooth wall gave the same 
wall shear velocity as the Clauser-chart method and the shape of the profile was also 
correct (i.e. no fall-off as the wall is approached). This confirmed that the X-wires, 
anemometers, calibration and sampling techniques were operating correctly. The 
tests on the mesh roughness were repeated with a 'smooth-wall check' immediately 
after calibration as follows. A smooth plate was placed over the mesh roughness, a 
mean velocity profile was measured and the wall shear stress determined using a 
Clauser chart. After calibrating the X-wires, the calibration was checked by measuring 
the Reynolds shear stress over the smooth plate, and having determined that the 
X-wires were giving the correct value of Reynolds shear stress, the smooth plate was 
immediately removed uncovering the mesh roughness. The Reynolds-shear-stress 
profile obtained over the mesh roughness was the same 'incorrect' profile as obtained 
before. As the shear stress determined using the velocity-defect-law method seemed 
to give reasonable agreement with a momentum balance, i t  was suspected that for 
some reason the X-wires were unable to determine the correct value of - u1 u3 over 
a rough surface. 

- 

3.3. Hesolution of the mystery 
In  view of the above, a reason was sought for the misbehaviour of the X-wires in 
measuring the Reynolds shear stress above a rough surface. Tutu & Chevray (1975), 
Willmarth &, Bogar (1977) and Kawal, Shokr & Keffer (1983) have shown that the 
use of X-wires in regions of very high turbulence intensity can result in large errors 
in measurement. Tutu & Chevray showed this by turbulence measurements in a 
turbulent jet and Willmarth & Bogar by turbulence measurements very close to a 
smooth wall. These large errors were due to  the large angles made by the velocity 
vectors as they approached the X-wires. One of the major differences between flow 
over a smooth surface and that over a rough surface is that for a given A ,  UT/v, q/ U, 
a t  a given z / A E  has a much lower value on a rough surface. In fact, 

where AU/UT is the Hama (1954) roughness function; the suffix R signifies a rough 
surface and the suffix S signifies a smooth surface. From the theory given earlier i t  
would be expected that in the turbulent wall region G / q  = A,  for z+ sufficiently 
large. Hence in this region 2 scales with U:. Since q/ U,  for a rough wall is less than 
that for a smooth wall, i t  stands to reason that the instantaneous velocity vectors 
approaching the X-wires in the plane of the wires will be undergoing a larger change 
in angle over the rough wall. One could imagine that all velocity vectors approaching 
the probe are contained in an elliptical cone and the cone angle above a rough surface 
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FIQURE 11. p.d.f. of y and velocity-vector diagrams over the mesh roughness for the following cases : 
(i) -, B = 90" stationary wire, vectors relative to the wall; (ii) -.--, = 120" stationary wire, 
vectors relative to the wall; (iii), = 120' flying wire, vectors relative to the probe; (iv) ----, 
/3 - = 120" flying wire, vectors relative to the wall. For all cases, z = 5 mm, = 10 m/s, 
U ,  = 4.0 m/s, 2 = 2500 mm, and for cases (iii) and (iv) the bias velocity was 2.5 m/s. 

will exceed that on a smooth surface. We shall define 8 as the maximum inferred cone 
angle - of the velocity vectors measured in the plane of the X-wires (i.e. (z, z)-plane for 
- u1 u3 measurements), y as the instantaneous velocity vector angle and /3 as the 
included angle of the X-wires (see figure 11) .  It is obvious that if y approaches or 
exceeds /3 then any measurements taken with such a set of X-wires would be 
completely erroneous. 

Inserts (i) and (ii) in figure 11 show plots of the velocity vectors measured with 
/3 = 90' and /3 = 120" wires when placed close to the mesh roughness. The /3 = 90' 
wires measured a cone angle 8 of 7 3 O  whereas the /3 = 120" wires measured a cone 
angle of 101". It was found by perturbing the wires with a known Reynolds shear 
stress that the Reynolds shear stress measured by the /3 = 90" wires deviated from 
ideal behaviour at a known 0 of 20°, whereas the /3 = 120" wires deviated at 55" 
for the calibration technique used here (see Lim 1985). This would suggest that the 
cone angles in the flow are still too large to be adequately resolved by the /3 = 120' 
wires. The /3 = 120' X-wire Reynolds shear stress was higher than those indicated 
by the /3 = 90" wires but still fell short of the value predicted by the velocity- 
defect-law method and the von Karmhn-momentum-integral method. It was then 
decided to attempt to measure the Reynolds shear stress using the flying hot wire. 
Flying the X-wires would have the following advantages: 

(i) It would reduce the velocity-vector cone angles seen by the X-wires by 
imposing an additionional T/U, of about 2.5; 

(ii) The effect of u2 would be reduced; 
(iii) The contribution of the stationary wave could be determined. 
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FIGURE 12. Reynolds-shear-stress profiles over the mesh roughness, x = 2500 mm. 0, /3 = 90" 
stationary; 0 ,  /3 = 90" flying; 0, p = 120" flying; A,  p = 120" stationary. 

Figure 12 shows the Reynolds shear stress measured by flying the ,4 = 90" and 
p = 120" wires and also earlier profiles measured with stationary wires so a 
comparison can be made between the different methods. The difference in Reynolds 
shear stress a t  the wall can be clearly seen. However, note that the values obtained 
with the p = 120" wires seem to be independent of bias velocity and this would seem 
to indicate that the p = 120" stationary X-wires are not being affected by excessive 
velocity-vector cone angles over the mesh roughness. The effect of the stationary 
wave over the mesh roughness was found to be negligible. Insert (iii) in figure 11 shows 
velocity-vector cone angles seen by the p = 120" wires as they are being 'flown' a t  
a bias velocity of q / U ,  = 2.5. Note how the cone angle 0 decreases from 101' to 69" 
as U, is increased from 4.0 to  6.5. Insert (iv) in figure 11 shows the same data 
with the bias velocity of the sled subtracted and the cone angle 0 is 119". Thus the 
inferred cone angle for the stationary /3 = 90" wires is incorrect if the p = 120" wire 
results are taken to be correct. 

Some normalized p.d.f.s of y are also shown in figure 11 for the various cases. Note 
how the p = 120" wires gave similar p.d.f.s for the velocity vectors relative to the 
wall whether the measurements were made with flying or stationary wires. From the 
fact that both cases also gave similar Reynolds shear stress profiles, we concluded 
that the p = 120" wires werc giving the correct readings whether stationary or flying. 

It is thought that the value of U, inferred from the p = 120" wire Reynolds shear 
stress profiles is correct and that the velocity-defect-law method is inaccurate because 
of insufficient flow development. The velocity-defect-law method uses the size of the 
wake and this has been shown to depend on flow development (see Coles 1962). It 
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is thought that the flow has not yet reached its asymptotic state where this law would 
be valid. 

The /3 = 90' and /3 = 120' stationary wires both gave identical Reynolds shear 
stress profiles and similar instantaneous velocity-vector angle p.d.f.s over the smooth 
wall, where q/U, x 20. The cone angle measured with the /3 = 120' wires was 30'. 

Of course there will be an even larger spread in vector angles in the (2, y)-plane. 
Analysis ~ shows that the resulting cross-contamination from the u2 component to 
-ul u3 is small since u, is uncorrelated with u1 and u,. However, the other turbulence 
intensity measurements (2 and 3) may be influenced by this cross-contamination. 

The work of Perry et al. (1983), which contains preliminary findings of the work 
reported here, led Acharya & Escudier (1984) to conduct a separate set of experiments 
over a similar 'mesh' type roughness. They used /3 = 90" and /3 = 120" stationary 
wires together with a floating-element drag balance and assumed linearity about the 
hot-wire anemometer operating point when reducing their data. Their findings ~ are 
in general agreement with the work reported here. However, the differences in - u1 u3 
they measured using a /3 = 90" and a /3 = 120' wire were not as large as those reported 
here. 

4. Turbulence intensity and spectral results over the smooth wall and the 
mesh roughness 

Mean flow, broadband turbulence intensity and spectral measurements were taken 
over a smooth wall at six values of K, in a nominally zero pressure gradient, where 
K, = A ,  U,/v, the von KarmBn number. The cases measured are shown in table 1 .  
Measurements were also taken over the mesh roughness in a zero pressure gradient 
at four values of K,, and these are given in table 2. Here, x is measured from the 
trip wire and 0 is the momentum thickness. Unless otherwise stated all u2- and 
u,-results were measured with a stationary /3 = 90" X-wire and the u,-results with 
a stationary normal wire. 

4.1. Smooth-wall spectra - turbulent wall region 
All smooth-wall spectra shown here are for the turbulent wall region, tentatively 
defined as z+ > 100; z/dE < 0.15. Figure 13(a, b) shows the u,-spectra scaled with 
inner-flow and outer-flow scaling respectively. These spectra seem to follow the 
scheme suggested in figure 1 (a, b) reasonably well. An inverse-power-law region, (2), 
can be seen in both figures and an inertial subrange (3) in figure 13(a). If a plot 
was to be made of log (k, z ) ~  vs. log (z+),  the expected slope of the line will be +f (see 

1). Perry et al. (1986) showed that if hot-wire spatial resolution is a problem in this 
wavenumber region, the slope of the line will be + l .  Figure 14 shows plots of 
log (kl z ) ~  vs. log (z+) determined from the experimental ul-, u2- and u,-spectra. The 
slope of + 4  for the ul-case shows that spatial resolution at wavenumbers up to the 
end of the inertial subrange is not a problem at least for the normal wires used here. 
Figure 15 (a) shows the u,-spectra scaled with inner-flow scaling coordinates. The 
u,-spectra can be seen to follow the same scaling laws as the u,-spectra. The inertial 
subrange is shorter in the u,-spectra and this is probably caused by premature peel-off 
of the spectra caused by a spatial-resolution problem confirmed in figure 14. Figure 
15(b) shows the u,-spectra with outer-flow scaling and these appear to follow the 
scaling scheme shown in figure 1 (b). The ul- and u,-spectra should collapse at  low 
wavenumbers with outer-flow scaling, but a considerable degree of scatter at low 
wavenumbers can be seen in figures 13 (b) and 15 (b). This is thought to be due to the 
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(mm) (m/s) K,  A ,  (mm) Ro(= u l E e / v )  

500 10 522 17 1200 
1750 10 1163 43 2 790 
3000 10 1751 69 4 240 

500 30 2 164 29 5110 
1750 30 3 502 49 8 660 
3000 30 4787 68 12 060 

TABLE 1. Smooth-wall flow parameters 

2 (mm) G (m/s, K,  A ,  (mm) Ro 
600 10 1413 36 2730 

2 500 10 3 484 96 7 280 
600 20 2 957 37 5 560 

2 500 20 6 841 95 14 120 

TABLE 2. Mesh roughness flow parameters 

kl 

10-2 10-1 100 10' .lo* 108 
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(b) Outer-flow scaling 

10' 

10' 

I00 

110-1 

10-2 

lo-' 

10-4 
10-8 10-2 10-1 100 10' 10% 

kl * 
FIGURE 13. u,-spectra for varying values of z / A ,  in the turbulent wall region over the smooth wall 

for values of K ,  given in table 1. (a) inner-flow scaling; (b) outer-flow scaling. 

fact that the application of Taylor's (1938) hypothesis of frozen turbulence may lead 
to errors in inferred wavenumber, as eddies of different scale have different convection 
velocities (see Wills 1964; Perry etal. 1986). Perry & Abell (1977) showed that an 
error in the inferred wavenumber does not affect the collapse of the data to  an 
inverse-power-law region since such an error shifts spectra plotted on logarithmic 
axes along a line of slope - 1 .  
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FIGURE 14. Plots of (k , z& 8s. z+ determined from the smooth ul-, u2- and u,-spectra measured 
in the turbulent wall region. 
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FIGURE 15. u,-spectra for varying values of z / A ,  in the turbulent wall region over the smooth wall 
for varying values of K ,  given in table 1 .  (a) inner-flow scaling; ( b )  outer-flow scaling. 

Figure 16 shows the u,-spectra plotted with inner-flow scaling. These spectra do 
not collapse as expected (figure 2) but there are two encouraging features of this plot. 
Firstly, there is no inverse power law region and secondly, the low wavenumber 
peel-offs do not depend on z/dE. The lack of collapse at  low wavenumbers cannot 
be blamed on the spread in convection velocities as only eddies of scale of order z 
contribute significantly to 2 at z. Instead, this is thought to be due to a cross- 
contamination problem, where the matched X-wire signals are being influenced by 
the velocity component normal to the plane of the wires. This may be caused by 
misalignment of the hot-wire filaments relative to the plane of measurement, either 
due to the plane of the wires not being parallel to each other or normal to the wall, 
or bowing of the hot-wire filaments. Since is significantly smaller than $ and 2, 
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FIQURE 16. u,-spectra for varying values of %/AE in the turbulent wall region over the smooth wall 
with inner-flow scaling for different values of K,  given in table 1 .  

the 3 measurements would suffer from a larger fractional error owing to cross- 
contamination. The inertial subrange is short because of the spatial-resolution 
problem which is confirmed in figure 14. 

4.2. Mesh spectra - turbulent wall region 

For the mesh roughnesss, the turbulent wall region is tentatively defined as 
2k < z < 0.15AE, where the roughness height k is 1.5 mm. Figure 17 (a, b )  shows the 
mesh roughness u,-spectra plotted with inner-flow and outer-flow scaling respect- 
ively. These rough-wall spectra appear to follow the same scaling laws as the 
smooth-wall spectra shown in figure 13(a, b). 

Because the scale of the smallest hierarchy on a rough surface is thought to scale 
with k ,  the total number of hierarchies over any given roughness geometry should 
depend on A E / k  alone. At a fixed z/AE, z+ is larger over a rough wall than a smooth 
wall, leading to a longer inertial subrange in the rough-wall spectra. The measured 
spectra show this to be the case. Figure 18 shows a plot of log ( k ,  z ) ~  ws. log (z+) and 
this verifies that the normal wire used had adequate spatial resolution. 

Figure 19(a, b) shows the mesh roughness u,-spectra plotted with inner-flow and 
outer-flow scaling respectively. The u,-spectra appear to follow the same scaling laws 
as the corresponding u,-spectra. However, the collapse onto an inverse-power-law 
region is not as convincing as in the case of the u,-spectra. On a smooth wall the lower 
limit of z/dE in the turbulent wall region is much smaller than that on the mesh 
roughness for the measurements presented here, and since the number of observed 
hierarchies depends on z/AE, the length of the inverse-power-law region should be 
shorter in the rough-wall spectra and this is confirmed in figures 17 and 19. These 
X-wires also had a spatial-resolution problem, as can be seen in figure 18. The collapse 
of the rough-wall ul- and u,-spectra a t  low wavenumbers plotted with outer-flow 
scaling is not as good as over the smooth surface and this can again be attributed 
to the error in inferred wavenumber due to the use of Taylor's hypothesis. Because 
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FIGURE 17. u,-spectra for varying values of z/AE in the turbulent wall region over the mesh 
roughness for values of K,  given in table 2. (a) inner-flow scaling; (b )  outer-flow scaling. (/3 = 120" 
stationary X-wire U,). 

FIGURE 18. Plots of (k, z ) ~  v8. z+ determined from the mesh roughness ul-, u,- and us-spectra 
measured in the turbulent wall region. 

the roughness causes a decrement in q/U, equal to AU/ U,, (the roughness function), 
the fractional spread in convection velocity between eddy scales will be higher and 
hence the error in inferred wavenumber over a rough surface is greater than over a 
smooth surface (see Perry & Abell 1977). 

Figure 20(a, b) shows the u,-spectra plotted with inner- and outer-flow scaling 
respectively. A short inertial subrange is present. No collapse is expected with 
outer-flow scaling and this is the case. 

The u2- and u,-spectra over the mesh roughness were measured before the 
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FIGURE 19. u,-spectra for varying values of z /AE in the turbulent wall region over the mesh 
roughness for values of K,  given in table 2. ( a )  inner-flow scaling; ( b )  outer-flow scaling. (/? = 120' 
stationary X-wire U,) .  
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FIGURE 20. us-spectra for varying values of %/AE in the turbulent wall region over the mesh 
roughness for values of K ,  given in table 2. ( a )  inner-flow scaling; ( b )  outer-flow scaling. (B = 120" 
stationary X-wire U,) .  
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FIGURE 21. Turbulence intensity distributions of (a) and ( b )  $/e over the smooth wall, K,: 
- +, 522; x ,  1163; A, 1751; n, 2164; 0 ,3502;  0 ,4787.  Predicted distributions (equation (4) for 
u : / e  and a similar equation for $ / V g  using the constants given in table 3) for K,: -, + 0 0 ;  

- * - * - ,  522; ----, 4787. 

cone-angle problem was discovered and were unfortunately measured with = 90" 
wires. Since a cone-angle problem is known to exist some doubt must be placed on 
the accuracy of these results. In  the next section we show that the use of B = 120" 
wires is not sufficient to solve the cone-angle problem for $ measurements and 
measurements. One solution mght be to fly the wires for these measurements. Such 
a major undertaking has not yet been carried out. We believe that although the 
results are inaccurate they at least show qualitative support for the similarity 
proposals. 

4.3. Broadband turbulence intensities - smooth wall 
Figure 21 (a, b) shows the measured 2 and distributions over the smooth plate and 
superimposed are the predicted distributions (equation (4) for $/U: and a similar 
equation for g/ using the smooth-wall numerical constants given in table 3, which 
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FIGURE 22. G/U,Z distributions over the smooth wall measured with three different X-wires. 
K ,  = 4787. /3 = 90" stationary X-wire; Clauser-chart U,. x , cross-contamination from u2 and u1 
suspected; 0, bowed wires; a, wires with no obvious defects; All three X-wires gave the same 
correct value of -= and values of $ that agreed with those obtained with a normal wire. 

were determined from spectra). The measured distributions seem to behave as the 
theory predicts especially in the ul-case, where a normal wire (which is less prone to 
error compared with a X-wire) was used in the measurements. 

As indicated earlier, we were suspicious of the u, measurements and decided to  
repeat the measurements with many different wires a t  the highest value of K,. The 
results of three of these X-wires are shown in figure 22. Two of the wires represent 
the extreme and one the norm. All three wires (p = 90') gave Reynolds shear stresses 
which when extrapolated to the wall agreed closely with the Clauser-chart result. 
They also gave the same values of $ as given by a normal wire to within 5 % in energy. 
These results indicate the difficulty in obtaining consistency in the 2 results. With 
the p = 120' wires the inferred values of G / q  were even more erratic from one set 
of wires to another. This was later experienced by Acharya & Escudier (1984) who 
measured %/U: with p = 90' and p = 120' wires above a rough surface and in a 
smooth-walled pipe. Cross-contamination of velocity components is the most likely 
cause, since there is an even larger spread in vector angles in the (z,y)-plane, the 
effects of which are yet to be investigated. It was therefore decided to  see what values 
of $/U:  other workers obtained in the turbulent wall region. We decided to plot 
u i / q  a t  % / A ,  = 0.1 us. A ,  U,/v ( = K,) provided zU,/v > 100 from all possible 
sources where the appropriate quantities were quoted or could be determined. 
Superimposed on this plot (figure 23) is (5 )  with z/AE = 0.1 for A,  = 1.0, 1.5 and 2.0 
and C = 6.08. This figure includes data from fully developed pipe and duct flow where 
A ,  is taken as the pipe radius or duct half-width. It can be seen that there are 
considerable discrepancies between various workers even if we only consider in turn 
the boundary-layer results and the pipe and duct results. According to the 
Buckingham I;l-theorem alone, smooth-wall boundary-layer results (assuming 
streamwise development is small) and smooth-pipe results should each collapse to 

- 
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g / p  = A,-#tC(z+)-1 . . . (5 )  

FIGURE 23. Normal turbulence intensity at %/AE = 0.1 versus von Kkrmkn number for the data 
of various workers compared with equation (5) with A, = 1.0, 1.5 and 2.0 and C = 6.08. 
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A ,  A ,  A3 Bl B, C 
Smooth 1.03 0.73 1.90 2.48 1.12 6.08 
Rough 1.26 0.63 1.78 2.01 1.08 7.50 

TABLE 3. Convtants determined from experimental spectra 

their own universal characteristic curve. It can be seen that this does not occur, thus 
strengthening the argument that this collection of results from various workers has 
errors. Furthermore, if the wall similarity and the attached eddy hypothesis outlined 
here are accepted all data including the rough-wall results should collapse on one 
universal curve irrespective of whether the data were derived from boundary-layer, 
pipe or duct flow. Because of the large amount of scatter between the results it is 
impossible to  put a precise value on A,. However, the majority of data suggest that 
A,  has a value of about 1.5. The large variation in $/U: between the results of 
the various workers is probably understandable in view of the results presented in 
figure 22. 

4.4. Broadband turbulence intensities - rough wall 
Figure 24(a) shows the distribution measured over the rough wall, non- 
dimensionalized with the U, inferred from the Reynolds shear stress profiles 
(p = 120' X-wires). Superimposed are the predicted distributions (4) for the turbulent 
wall region using the rough-wall constants given in table 3. Agreement is reasonable 
but i t  can be seen that the turbulence intensities seem to become constant as the wall 
is approached. A possible explanation may be that close to the wall z < 8, and we 
are measuring below the lower limit of the turbulent wall region. I n  terms of Perry 
& Chong's model of wall turbulence, for z < a,, where 6, is the scale of the smallest 
hierarchy, the turbulence intensity distribution falls below the logarithmic distri- 
bution (4) even for z+ large. 

Figure 24(b) shows the $ distribution measured over the rough wall with the 
predicted distributions superimposed. The fit to the data is disappointing, probably 
due to inadequate spatial resolution and the presence of mean shear over the wires. 
Also B = 90' wires were used. 

Figure 24 (c) shows the 2 distributions measured over the rough wall with /3 = 90' 
wires. The cone-angle problem had not been discovered when these tests were carried 
out. The predicted distribution for A, = 1.78 (which was the value obtained from the 
rough-wall u,-spectra) is superimposed. As mentioned earlier, G / q  is not easy to 
measure accurately close to  the wall, and over this surface, the cone-angle problem 
is present as well. However, figure 23 suggests that this data has A ,  x 1.5 and 
although this data is known to be inaccurate this seems to be in the correct region 
of the plot. 

4.5. Spectra in the fully turbulent region 
Following the extended Townsend-Reynolds-number similarity hypothesis (Perry & 
Abell 1977), the spectrum of the energy-containing components of ut-velocity 
fluctuations in the fully turbulent region should follow 
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FIGURE 24. Turbulence intensity distributions of (a) q/q, (b)  and (c) z/q over the mesh 
roughness, K,:  +, 1413; m, 2957; x , 3484; 0, 6841. Predicted distributions (equations (4) and 
(5)) K,: -1  + C O ;  -.-.-, 1413; ----, 6841. 
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FIGURE 25. Smooth-wall spectra for varying z / A  in the fully turbulent region. Inner-flow scaling. 
K,  = 4787. ( a )  u,-spectra, (a) us-spectra, (c) us-spectra. 
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FIQURE 26. Mesh roughness spectra for varying %/AE in the fully turbulent region. Inner-flow 
scaling. K, = 6841. (a) u,-spectra, (b)  u,-spectra, (c) u,-spectra. (/3 = 120" stationary X-wire U,). 
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Here the fully turbulent region is defined as lOOu/U, < z < A , for a smooth wall and 
2k < z < A ,  for a rough wall. Figure 25(a-c) shows the smooth-wall ul,- u2- and 
u,-spectra respectively, measured in the fully turbulent region for various values of 
z / A E  a t  the highest value of K ,  = 4787. The ul-, u2- and us-spectra each appear to  
follow (15). For z / A ,  sufficiently small an inverse-power-law region emerges in the 
ul- and u,-spectra, while no such region can be seen in the u,-spectra. This behaviour 
is consistef;t with the model of Perry & Chong (1982) and of Perry et al. (1986). At 
high wafenumbers the spectra collapse to a - !j power law and this is consistent with 
Kolmdgorov’s analysis of the spectrum in the inertial subrange. When plotted with 
Kolmogorov scaling coordinates, each of the above spectra collapse and an inertial 
subrange is evident. I n  the ‘wake region’ spatial resolution is less of a problem 
because the Kolmogorov lengthscales are considerbly larger than those in the 
turbulent wall region. Figure 26 (a-c) shows the mesh roughness ul-, uz- and u,-spectra 
respectively, measured at the highest value of K ,  = 6841. These spectra are similar 
to the corresponding smooth-wall spectra. The smooth- and rough-wall spectra give 
support to Townsend’s Reynolds-number similarity hypothesis and to the model of 
Perry et al. (1986). 

5. Conclusions 
I n  spite of the major experimental difficulties encountered with hot-wire anemo- 

metry, the spectral and turbulence-intensity data measured in smooth- and rough- 
walled boundary layers presented here give encouraging support for the 
attached-eddy hypothesis of Townsend, the model of Perry & Chong and the classic 
Kolmogorov theory for local isotropy. This complements the work of Perry et al. 
(1986) who confined their measurements to fully developed smooth-walled pipe flow. 
However, for a completely satisfactory verification of any of the proposed similarity 
laws, certain problems still need to be overcome. For spectra, the spread in convection 
velocity is a problem at low wavenumbers and spatial resolution is a problem a t  high 
wavenumbers. Large errors were observed in the measurements of Reynolds shear 
stress with a X-wire above a rough surface. The cause of this was traced to the fact 
that the spread in the angle of the velocity vectors resolved in the (z,z)-plane 
approaching a X-wire above a rough surface is very large, whereas on a smooth surface 
the angular spread is sufficiently small so as not to  cause difficulties. One method of 
overcoming this problem is to increase the included angle of the X-wires. This 
improves measurements of Reynolds shear stress but the errors in the normal 
fluctuating component (u,) are greatly increased. It is expected that angular spread 
in the (z,y)-plane is larger than that in the (z,z)-plane and may be responsible for 
the cross-contamination of the measurements of 2, even above a smooth surface. A 
better solution to the problem is to  ‘fly’ the X-wires, thereby reducing the angular 
spread in both planes of velocity vectors approaching the probe and a t  the same time, 
hopefully, minimizing the effect of cross-contamination. So far, we have studied the 
effect of ‘flying’ the wires only on Reynolds shear stress measurements above rough 
surfaces. We feel that  to  reduce the cone angle sufficiently in the (2, y)-plane we need 
to ‘fly ’ the wires a t  an even higher velocity than is possible with the present apparatus 
before accurate measurements of 3 and 3 may be made. The technique of flying the 
wires could also be extended to the measurement of turbulence spectra. The fractional 
spread in convection velocities of various Fourier components would be reduced 
significantly if the additional bias velocity imposed on the probe is sufficiently large, 



Turbulence structure i'n smooth- a d  rough-wall boundary layers 465 

thus reducing the uncertainties in the inferred wavenumbers for spectra, especially 
at low wavenumber. 
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